Biography

I graduated from Saratov State University, Russia, in 2000 and was awarded a PhD in Theoretical Solid Mechanics from the University of Salford in 2004. After my PhD I spent two years as a postdoc at the Russian State Technical University of Railways (Moscow), working on train dynamics, and was then appointed a Lecturer in Applied Mathematics within the same University. In 2007 I moved to the famous Bauman Moscow State Technical University, where I spent six years before coming to Keele in 2013.

Research and scholarship

My research interests are mainly focussed around vibrations and wave propagation in continuum mechanics; more specifically I am interested in surface, interfacial and edge waves in elastic solids. Another recent aspect of my research is mechanics of strongly inhomogeneous solids.

Teaching

  • MAT-20004: Complex Variable I & Vector Calculus
  • MAT-20008: Differential Equations
  • MAT-40005: Linear Elasticity

Selected Publications

  • Kudaibergenov A, Kudaibergenov A, Prikazchikov D. Near-resonant regimes of the moving load on a pre-stressed incompressible elastic half-space. Acta Mechanica et Automatica. full text>
  • Prikazchikov DA. 2020. Explicit model for surface waves in a pre-stressed, compressible elastic half-space. International Journal of Mathematics and Physics, 13-19, vol. 11(1). doi> link> full text>
  • Wootton PT, Kaplunov J, Prikazchikov D. 2020. A second-order asymptotic model for Rayleigh waves on a linearly elastic half plane. IMA JOURNAL OF APPLIED MATHEMATICS, 113-131, vol. 85(1). link> doi> full text>
  • Fu Y, Kaplunov J, Prikazchikov D. 2020. Reduced model for the surface dynamics of a generally anisotropic elastic half-space. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, Article ARTN 20190590, vol. 476(2234). link> doi> full text>
  • Kaplunov J, Prikazchikov D, Prikazchikova L, Nikonov A, Savšek T. Multi-parametric dynamic analysis of lightweight elastic laminates. IOP Conference Series: Materials Science and Engineering: Vol 683. IOP Publishing. doi> full text>

Full Publications Listshow

Journal Articles

  • Kudaibergenov A, Kudaibergenov A, Prikazchikov D. Near-resonant regimes of the moving load on a pre-stressed incompressible elastic half-space. Acta Mechanica et Automatica. full text>
  • Prikazchikov DA. 2020. Explicit model for surface waves in a pre-stressed, compressible elastic half-space. International Journal of Mathematics and Physics, 13-19, vol. 11(1). doi> link> full text>
  • Wootton PT, Kaplunov J, Prikazchikov D. 2020. A second-order asymptotic model for Rayleigh waves on a linearly elastic half plane. IMA JOURNAL OF APPLIED MATHEMATICS, 113-131, vol. 85(1). link> doi> full text>
  • Fu Y, Kaplunov J, Prikazchikov D. 2020. Reduced model for the surface dynamics of a generally anisotropic elastic half-space. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, Article ARTN 20190590, vol. 476(2234). link> doi> full text>
  • Kaplunov J, Prikazchikov D, Sultanova L. 2019. Rayleigh-type waves on a coated elastic half-space with a clamped surface. Philos Trans A Math Phys Eng Sci, 20190111, vol. 377(2156). link> doi> full text>
  • Kaplunov J, Prikazchikov DA, Prikazchikova LA, Sergushova O. 2019. The lowest vibration spectra of multi-component structures with contrast material properties. JOURNAL OF SOUND AND VIBRATION, 132-147, vol. 445. link> doi> full text>
  • Kaplunov J, Prikazchikov D, Sultanova L. 2019. Elastic contact of a stiff thin layer and a half-space. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, Article ARTN 22, vol. 70(1). link> doi> full text>
  • Kolpakov AG, Andrianov IV, Prikazchikov DA. 2018. ASYMPTOTIC STRATEGY FOR MATCHING HOMOGENIZED STRUCTURES. CONDUCTIVITY PROBLEM. QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 519-535, vol. 71(4). link> doi> full text>
  • Borodich FM, Galanov BA, Perepelkin NV, Prikazchikov DA. 2019. Adhesive contact problems for a thin elastic layer: Asymptotic analysis and the JKR theory. MATHEMATICS AND MECHANICS OF SOLIDS, 1405-1424, vol. 24(5). link> doi> full text>
  • Khajiyeva LA, Prikazchikov DA, Prikazchikov LA. 2018. Hyperbolic-elliptic model for surface wave in a pre-stressed incompressible elastic half-space. MECHANICS RESEARCH COMMUNICATIONS, 49-53, vol. 92. link> doi> full text>
  • Mikhasev G, Avdeichik E, Prikazchikov D. 2019. Free vibrations of nonlocally elastic rods. MATHEMATICS AND MECHANICS OF SOLIDS, 1279-1293, vol. 24(5). link> doi> full text>
  • Kaplunov J, Prikazchikov D, Sultanova L. 2018. Justification and refinement of Winkler-Fuss hypothesis. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, Article ARTN 80, vol. 69(3). link> doi> full text>
  • Nobili A and Prikazchikov DA. 2018. Explicit formulation for the Rayleigh wave field induced by surface stresses in an orthorhombic half-plane. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 86-94, vol. 70. link> doi> full text>
  • Kaplunov J, Prikazchikov DA, Prikazchikova LA. 2017. Dispersion of elastic waves in laminated glass. X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 1489-1494, vol. 199. link> doi> full text>
  • Ege N, Erbas B, Chorozoglou A, Kaplunov J, Prikazchikov DA. 2017. On surface wave fields arising in soil-structure interaction problems. X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2366-2371, vol. 199. link> doi> full text>
  • Kaplunov J and Prikazchikov D. 2017. Asymptotic Theory for Rayleigh and Rayleigh-Type Waves. Advances in Applied Mechanics. doi> full text>
  • Kaplunov J, Prikazchikov DA, Prikazchikova LA. 2017. Dispersion of elastic waves in a strongly inhomogeneous three-layered plate. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 169-179, vol. 113. link> doi> full text>
  • Kaplunov J, Prikazchikov DA, Rogerson GA. 2016. Edge bending wave on a thin elastic plate resting on a Winkler foundation. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, Article ARTN 20160178, vol. 472(2190). link> doi> full text>
  • Althobaiti S and Prikazchikov D. 2016. Edge bending waves on an orthotropic elastic plate resting on the Winkler-Fuss foundation. Proceedings of National Academy of Sciences of Armenia. full text>
  • Kaplunov J, Prikazchikov D, Sergushova O. 2016. Multi-parametric analysis of the lowest natural frequencies of strongly inhomogeneous elastic rods. JOURNAL OF SOUND AND VIBRATION, 264-276, vol. 366. link> doi> full text>
  • Evkin A, Kolesnikov M, Prikazchikov D. 2016. Buckling of a spherical shell under external pressure and inward concentrated load: asymptotic solution. Mathematics and Mechanics of Solids. doi> link> full text>
  • Ege N, Erbas B, Prikazchikov DA. 2015. On the 3D Rayleigh wave field on an elastic half-space subject to tangential surface loads. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1558-1565, vol. 95(12). link> doi>
  • Pichugin AV and Prikazchikov DA. 2016. Remarks on explicit strong ellipticity conditions for anisotropic or pre-stressed incompressible solids. QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 67-81, vol. 69(1). link> doi> full text>
  • Kaplunov J, Prikazchikov DA, Rogerson GA, Lashab MI. 2014. The edge wave on an elastically supported Kirchhoff plate. Journal of the Acoustical Society of America, 1487-1490, vol. 136(4). link> doi> full text>
  • Erbas B, Kaplunov J, Prikazchikov DA, Sahin O. 2017. The near-resonant regimes of a moving load in a three-dimensional problem for a coated elastic half-space. MATHEMATICS AND MECHANICS OF SOLIDS, 89-100, vol. 22(1). link> doi> full text>
  • Prikazchikov DA. 2013. Rayleigh waves of arbitrary profile in anisotropic media. MECHANICS RESEARCH COMMUNICATIONS, 83-86, vol. 50. link> doi> full text>
  • Kaplunov, J, Prikazchikov D, Erbas, B, Sahin, O. 2012. On a 3D moving load problem for an elastic half space. Wave Motion, 1229-1238. doi>
  • Erbas, B, Kaplunov, J, Prikazchikov D. 2012. The Rayleigh wave field in mixed problems for a half-plane. IMA Journal of Applied Mathematics, 1078-1086. doi>
  • Kaplunov J, Nolde E, Prikazchikov DA. 2010. A revisit to the moving load problem using an asymptotic model for the Rayleigh wave. WAVE MOTION, 440-451, vol. 47(7). link> doi>
  • Dai H-H, Kaplunov J, Prikazchikov DA. 2010. A long-wave model for the surface elastic wave in a coated half-space. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 3097-3116, vol. 466(2122). link> doi>
  • Destrade M, Gilchrist MD, Prikazchikov DA, Saccomandi G. 2008. Surface instability of sheared soft tissues. J Biomech Eng, 061007, vol. 130(6). link> doi>
  • Prikazchikov DA, Rogerson GA, Sandiford KJ. 2007. On localised vibrations in incompressible pre-stressed transversely isotropic elastic solids. JOURNAL OF SOUND AND VIBRATION, 701-717, vol. 301(3-5). link> doi>
  • Kaplunov J, Zakharov A, Prikazchikov D. 2006. Explicit models for elastic and piezoelastic surface waves. IMA JOURNAL OF APPLIED MATHEMATICS, 768-782, vol. 71(5). link> doi>
  • Kaplunov J, Prikazchikov DA, Rogerson GA. 2005. On three-dimensional edge waves in semi-infinite isotropic plates subject to mixed face boundary conditions. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2975-2983, vol. 118(5). link> doi>
  • Kaplunov JD, Prikazchikov DA, Rogerson GA. 2004. Edge vibration of a pre-stressed semi-infinite strip with tractionfree edge and mixed face boundary conditions. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 701-719, vol. 55(4). link> doi>
  • Prikazchikov DA and Rogerson GA. 2004. On surface wave propagation in incompressible, transversely isotropic, pre-stressed elastic half-spaces. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 967-986, vol. 42(10). link> doi>
  • Prikazchikov DA and Rogerson GA. 2003. Some comments on the dynamic properties of anisotropic and strongly anisotropic pre-stressed elastic solids. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 149-171, vol. 41(2). link> doi>

Chapters

  • Kaplunov J, Prikazchikov D, Sultanova L. 2019. On Higher Order Effective Boundary Conditions for a Coated Elastic Half-Space. In Problems of Nonlinear Mechanics and Physics of Materials. Andrianov IV, Manevich AI, Mikhlin YV, Gendelman OV (Eds.). Springer International Publishing. doi> link>
  • Kaplunov J, Prikazchikov D, Sergushova O. 2017. Lowest Vibration Modes of Strongly Inhomogeneous Elastic Structures. In Mechanics for Materials and Technologies. (vol. 46). Springer International Publishing. doi> link>
  • Kaplunov J and Prikazchikov DA. 2013. Explicit models for surface, interfacial and edge waves in elastic solids. In Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism. Springer Science & Business Media. full text>
  • Kaplunov J and Prikazchikov DA. 2013. Explicit models for surface, interfacial and edge waves in elastic solids. In Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism. Springer Science & Business Media. full text>
  • Kaplunov J and Prikazchikov DA. 2013. Explicit Models for Surface, Interfacial and Edge Waves. In CISM International Centre for Mechanical Sciences. Springer Vienna. doi>

Other

  • Kaplunov J, Prikazchikov D, Prikazchikova L, Nikonov A, Savšek T. Multi-parametric dynamic analysis of lightweight elastic laminates. IOP Conference Series: Materials Science and Engineering: Vol 683. IOP Publishing. doi> full text>
  • Althobaiti SN, Kaplunov J, Prikazchikov DA. 2017. An edge moving load on an orthotropic plate resting on a Winkler foundation. X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017) (pp. 2579-2584, vol. 199). link> doi> full text>
  • Bratov V, Kaplunov J, Prikazchikov DA. 2016. On steady-state moving load problems for an elastic half-space. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DAYS ON DIFFRACTION 2016 (DD) (pp. 84-88). link> doi>
  • Kaplunov J and Prikazchikov DA. 2014. On the near-resonant regimes of the moving load in case of a coated elastic half-space. EURODYN 2014: IX INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (pp. 669-673). link>

Research themes

Multi-scale modelling of nano and meta materials

Theoretical Solid Mechanics

Athena Swan