Biography

I graduated from Saratov State University, Russia, in 2000 and was awarded a PhD in Theoretical Solid Mechanics from the University of Salford in 2004. After my PhD I spent two years as a postdoc at the Russian State Technical University of Railways (Moscow), working on train dynamics, and was then appointed a Lecturer in Applied Mathematics within the same University. In 2007 I moved to the famous Bauman Moscow State Technical University, where I spent six years before coming to Keele in 2013.

Research and scholarship

My research interests are mainly focussed around vibrations and wave propagation in continuum mechanics; more specifically I am interested in surface, interfacial and edge waves in elastic solids. Another recent aspect of my research is mechanics of strongly inhomogeneous solids.

Teaching

  • MAT-10046 Calculus (spring semester)
  • MAT-30002 Nonlinear Differential Equqations
  • MAT-30047 Introduction to Linear Elasticity

Selected Publications

  • Prikazchikov DA. 2023. Asymptotic Formulation for the Rayleigh Wave on a Nonlocally Elastic Half-Space. Vibration, 57-64, vol. 6(1). doi> link>
  • Aney S, Shestakov M, Prikazchikova L, Milow B, Prikazchikov D, Kaplunov J, Voggenreiter H, Rege A. 2023. Cellulose-Aerogele als multifunktionale und nachhaltige Alternativen für Flugzeugkabinenelemente. Deutsche Gesellschaft für Luft- und Raumfahrt. link> doi> link> full text>
  • Kaplunov J, Prikazchikov DA, Prikazchikova L. 2022. On non-locally elastic Rayleigh wave. Philos Trans A Math Phys Eng Sci, 20210387, vol. 380(2231). link> doi> full text>
  • Bauer SM, Mikhasev GI, Prikazchikov DA. 2022. Preface to “<i>Advances in mathematical theory of thin structures</i>” in memory of Professor Petr E. Tovstik. Mathematics and Mechanics of Solids, 1635-1637, vol. 27(9). doi> link>
  • Kaplunov J and Prikazchikov DA. On The Derivation Of A String Equation. Mechanics - Proceedings of National Academy of Sciences of Armenia, 163-168, vol. 75(1). link> doi> link>

Full Publications Listshow

Journal Articles

  • Prikazchikov DA. 2023. Asymptotic Formulation for the Rayleigh Wave on a Nonlocally Elastic Half-Space. Vibration, 57-64, vol. 6(1). doi> link>
  • Aney S, Shestakov M, Prikazchikova L, Milow B, Prikazchikov D, Kaplunov J, Voggenreiter H, Rege A. 2023. Cellulose-Aerogele als multifunktionale und nachhaltige Alternativen für Flugzeugkabinenelemente. Deutsche Gesellschaft für Luft- und Raumfahrt. link> doi> link> full text>
  • Kaplunov J, Prikazchikov DA, Prikazchikova L. 2022. On non-locally elastic Rayleigh wave. Philos Trans A Math Phys Eng Sci, 20210387, vol. 380(2231). link> doi> full text>
  • Bauer SM, Mikhasev GI, Prikazchikov DA. 2022. Preface to “<i>Advances in mathematical theory of thin structures</i>” in memory of Professor Petr E. Tovstik. Mathematics and Mechanics of Solids, 1635-1637, vol. 27(9). doi> link>
  • Kaplunov J and Prikazchikov DA. On The Derivation Of A String Equation. Mechanics - Proceedings of National Academy of Sciences of Armenia, 163-168, vol. 75(1). link> doi> link>
  • Bratov V, Kaplunov J, Lapatsin SN, Prikazchikov DA. Elastodynamics of a coated half-space under a sliding contact. Mathematics and Mechanics of Solids, 108128652210944. doi> link> full text>
  • Mubaraki A and Prikazchikov D. 2022. On Rayleigh wave field induced by surface stresses under the effect of gravity. MATHEMATICS AND MECHANICS OF SOLIDS, 1771-1782, vol. 27(9). link> doi> full text>
  • Kaplunov J, Prikazchikov DA, Prikazchikova L. 2022. On integral and differential formulations in nonlocal elasticity. European Journal of Mechanics - A/Solids, 104497. doi> link> full text>
  • Althobaiti SN, Nikonov A, Prikazchikov D. 2021. Explicit model for bending edge wave on an elastic orthotropic plate supported by the Winkler–Fuss foundation. Journal of Mechanics of Materials and Structures, 543-554, vol. 16(4). doi> link> full text>
  • Prikazchikov DA, Chevrychkina AA, Chorozoglou A, Khajiyeva L. 2021. Elastic Surface Waves Induced by Internal Sources. Journal of Mathematical Sciences, 545-552, vol. 258(4). link> doi> link> full text>
  • Kudaibergenov A, Kudaibergenov A, Prikazchikov D. Near-resonant regimes of the moving load on a pre-stressed incompressible elastic half-space. Acta Mechanica et Automatica, 30-36, vol. 15(1). doi> link> full text>
  • Prikazchikov DA. 2020. Explicit model for surface waves in a pre-stressed, compressible elastic half-space. International Journal of Mathematics and Physics, 13-19, vol. 11(1). doi> link> full text>
  • Wootton PT, Kaplunov J, Prikazchikov D. 2020. A second-order asymptotic model for Rayleigh waves on a linearly elastic half plane. IMA JOURNAL OF APPLIED MATHEMATICS, 113-131, vol. 85(1). link> doi> full text>
  • Fu Y, Kaplunov J, Prikazchikov D. 2020. Reduced model for the surface dynamics of a generally anisotropic elastic half-space. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, Article ARTN 20190590, vol. 476(2234). link> doi> full text>
  • Kaplunov J, Prikazchikov D, Sultanova L. 2019. Rayleigh-type waves on a coated elastic half-space with a clamped surface. Philos Trans A Math Phys Eng Sci, 20190111, vol. 377(2156). link> doi> full text>
  • Kaplunov J, Prikazchikov DA, Prikazchikova LA, Sergushova O. 2019. The lowest vibration spectra of multi-component structures with contrast material properties. JOURNAL OF SOUND AND VIBRATION, 132-147, vol. 445. link> doi> full text>
  • Kaplunov J, Prikazchikov D, Sultanova L. 2019. Elastic contact of a stiff thin layer and a half-space. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, Article ARTN 22, vol. 70(1). link> doi> full text>
  • Kolpakov AG, Andrianov IV, Prikazchikov DA. 2018. ASYMPTOTIC STRATEGY FOR MATCHING HOMOGENIZED STRUCTURES. CONDUCTIVITY PROBLEM. QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 519-535, vol. 71(4). link> doi> full text>
  • Borodich FM, Galanov BA, Perepelkin NV, Prikazchikov DA. 2019. Adhesive contact problems for a thin elastic layer: Asymptotic analysis and the JKR theory. MATHEMATICS AND MECHANICS OF SOLIDS, 1405-1424, vol. 24(5). link> doi> full text>
  • Khajiyeva LA, Prikazchikov DA, Prikazchikov LA. 2018. Hyperbolic-elliptic model for surface wave in a pre-stressed incompressible elastic half-space. MECHANICS RESEARCH COMMUNICATIONS, 49-53, vol. 92. link> doi> full text>
  • Mikhasev G, Avdeichik E, Prikazchikov D. 2019. Free vibrations of nonlocally elastic rods. MATHEMATICS AND MECHANICS OF SOLIDS, 1279-1293, vol. 24(5). link> doi> full text>
  • Kaplunov J, Prikazchikov D, Sultanova L. 2018. Justification and refinement of Winkler-Fuss hypothesis. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, Article ARTN 80, vol. 69(3). link> doi> full text>
  • Nobili A and Prikazchikov DA. 2018. Explicit formulation for the Rayleigh wave field induced by surface stresses in an orthorhombic half-plane. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 86-94, vol. 70. link> doi> full text>
  • Kaplunov J, Prikazchikov DA, Prikazchikova LA. 2017. Dispersion of elastic waves in laminated glass. X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 1489-1494, vol. 199. link> doi> full text>
  • Ege N, Erbas B, Chorozoglou A, Kaplunov J, Prikazchikov DA. 2017. On surface wave fields arising in soil-structure interaction problems. X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2366-2371, vol. 199. link> doi> full text>
  • Kaplunov J and Prikazchikov D. 2017. Asymptotic Theory for Rayleigh and Rayleigh-Type Waves. Advances in Applied Mechanics. doi> full text>
  • Kaplunov J, Prikazchikov DA, Prikazchikova LA. 2017. Dispersion of elastic waves in a strongly inhomogeneous three-layered plate. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 169-179, vol. 113. link> doi> full text>
  • Kaplunov J, Prikazchikov DA, Rogerson GA. 2016. Edge bending wave on a thin elastic plate resting on a Winkler foundation. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, Article ARTN 20160178, vol. 472(2190). link> doi> full text>
  • Althobaiti S and Prikazchikov D. 2016. Edge bending waves on an orthotropic elastic plate resting on the Winkler-Fuss foundation. Proceedings of National Academy of Sciences of Armenia. full text>
  • Kaplunov J, Prikazchikov D, Sergushova O. 2016. Multi-parametric analysis of the lowest natural frequencies of strongly inhomogeneous elastic rods. JOURNAL OF SOUND AND VIBRATION, 264-276, vol. 366. link> doi> full text>
  • Evkin A, Kolesnikov M, Prikazchikov D. 2016. Buckling of a spherical shell under external pressure and inward concentrated load: asymptotic solution. Mathematics and Mechanics of Solids. doi> link> full text>
  • Ege N, Erbas B, Prikazchikov DA. 2015. On the 3D Rayleigh wave field on an elastic half-space subject to tangential surface loads. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1558-1565, vol. 95(12). link> doi>
  • Pichugin AV and Prikazchikov DA. 2016. Remarks on explicit strong ellipticity conditions for anisotropic or pre-stressed incompressible solids. QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 67-81, vol. 69(1). link> doi> full text>
  • Kaplunov J, Prikazchikov DA, Rogerson GA, Lashab MI. 2014. The edge wave on an elastically supported Kirchhoff plate. Journal of the Acoustical Society of America, 1487-1490, vol. 136(4). link> doi> full text>
  • Erbas B, Kaplunov J, Prikazchikov DA, Sahin O. 2017. The near-resonant regimes of a moving load in a three-dimensional problem for a coated elastic half-space. MATHEMATICS AND MECHANICS OF SOLIDS, 89-100, vol. 22(1). link> doi> full text>
  • Prikazchikov DA. 2013. Rayleigh waves of arbitrary profile in anisotropic media. MECHANICS RESEARCH COMMUNICATIONS, 83-86, vol. 50. link> doi> full text>
  • Kaplunov, J, Prikazchikov D, Erbas, B, Sahin, O. 2012. On a 3D moving load problem for an elastic half space. Wave Motion, 1229-1238. doi>
  • Erbas, B, Kaplunov, J, Prikazchikov D. 2012. The Rayleigh wave field in mixed problems for a half-plane. IMA Journal of Applied Mathematics, 1078-1086. doi>
  • Kaplunov J, Nolde E, Prikazchikov DA. 2010. A revisit to the moving load problem using an asymptotic model for the Rayleigh wave. WAVE MOTION, 440-451, vol. 47(7). link> doi>
  • Dai H-H, Kaplunov J, Prikazchikov DA. 2010. A long-wave model for the surface elastic wave in a coated half-space. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 3097-3116, vol. 466(2122). link> doi>
  • Destrade M, Gilchrist MD, Prikazchikov DA, Saccomandi G. 2008. Surface instability of sheared soft tissues. J Biomech Eng, 061007, vol. 130(6). link> doi>
  • Prikazchikov DA, Rogerson GA, Sandiford KJ. 2007. On localised vibrations in incompressible pre-stressed transversely isotropic elastic solids. JOURNAL OF SOUND AND VIBRATION, 701-717, vol. 301(3-5). link> doi>
  • Kaplunov J, Zakharov A, Prikazchikov D. 2006. Explicit models for elastic and piezoelastic surface waves. IMA JOURNAL OF APPLIED MATHEMATICS, 768-782, vol. 71(5). link> doi>
  • Kaplunov J, Prikazchikov DA, Rogerson GA. 2005. On three-dimensional edge waves in semi-infinite isotropic plates subject to mixed face boundary conditions. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2975-2983, vol. 118(5). link> doi>
  • Kaplunov JD, Prikazchikov DA, Rogerson GA. 2004. Edge vibration of a pre-stressed semi-infinite strip with tractionfree edge and mixed face boundary conditions. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 701-719, vol. 55(4). link> doi>
  • Prikazchikov DA and Rogerson GA. 2004. On surface wave propagation in incompressible, transversely isotropic, pre-stressed elastic half-spaces. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 967-986, vol. 42(10). link> doi>
  • Prikazchikov DA and Rogerson GA. 2003. Some comments on the dynamic properties of anisotropic and strongly anisotropic pre-stressed elastic solids. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 149-171, vol. 41(2). link> doi>

Chapters

  • Prikazchikov D. Explicit Model for Surface Waves on an Elastic Half-Space Coated by a Thin Vertically Inhomogeneous Layer. In Dynamical Systems Theory and Applications. (24 vols.). Springer, Cham. link> doi> link>
  • Kaplunov J, Prikazchikov D, Sultanova L. 2019. On Higher Order Effective Boundary Conditions for a Coated Elastic Half-Space. In Problems of Nonlinear Mechanics and Physics of Materials. Andrianov IV, Manevich AI, Mikhlin YV, Gendelman OV (Eds.). Springer International Publishing. doi> link>
  • Kaplunov J, Prikazchikov D, Sergushova O. 2017. Lowest Vibration Modes of Strongly Inhomogeneous Elastic Structures. In Mechanics for Materials and Technologies. (vol. 46). Springer International Publishing. doi> link>
  • Kaplunov J and Prikazchikov DA. 2013. Explicit models for surface, interfacial and edge waves in elastic solids. In Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism. Springer Science & Business Media. full text>
  • Kaplunov J and Prikazchikov DA. 2013. Explicit models for surface, interfacial and edge waves in elastic solids. In Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism. Springer Science & Business Media. full text>
  • Kaplunov J and Prikazchikov DA. 2013. Explicit Models for Surface, Interfacial and Edge Waves. In CISM International Centre for Mechanical Sciences. Springer Vienna. doi>

Other

  • Kaplunov J, Prikazchikov D, Prikazchikova L, Nikonov A, Savšek T. Multi-parametric dynamic analysis of lightweight elastic laminates. IOP Conference Series: Materials Science and Engineering: Vol 683. IOP Publishing. doi> full text>
  • Althobaiti SN, Kaplunov J, Prikazchikov DA. 2017. An edge moving load on an orthotropic plate resting on a Winkler foundation. X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017) (pp. 2579-2584, vol. 199). link> doi> full text>
  • Bratov V, Kaplunov J, Prikazchikov DA. 2016. On steady-state moving load problems for an elastic half-space. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DAYS ON DIFFRACTION 2016 (DD) (pp. 84-88). link> doi>
  • Kaplunov J and Prikazchikov DA. 2014. On the near-resonant regimes of the moving load in case of a coated elastic half-space. EURODYN 2014: IX INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (pp. 669-673). link>

Research themes

Multi-scale modelling of nano and meta materials

Theoretical Solid Mechanics

School of Computer Science and Mathematics
Keele University
Staffordshire
ST5 5AA