Key Facts

Course Title: Medical Engineering Design
Course type: MSc, Diploma
Mode of Study:Full Time or Part Time
Contact Details:Hildegarde Wright
Contact or,
Website: Go to School homepage
Faculty: Faculty of Medicine and Health Sciences
Subject Area: Medicine


If you have ever spent some time in hospital, you are probably unaware that you were the beneficiary of medical devices that have been designed and developed by Medical Engineering Designers. Everything from the bed you lie on to the MRI scanner that shows your insides on a screen, to the blood pressure monitor, to the scalpel that cuts your skin is known as a Medical Device and will have had input from Medical Engineering Designers.  Even if you have a blood pressure monitor at home, this is still a medical device and will have been designed by a Medical Engineering Designer. The aim of the MSc in Medical Engineering Design is to convert you into a Medical Engineering Designer so that you can work in this highly regulated design discipline.

Female in front of computer

The course is run by the School of Medicine in collaboration with the Research Institute for Science and Technology in Medicine.

Teaching takes place at the Guy Hilton Research Centre, a dedicated research facility located on the Royal Stoke University Hospital site, and also at the main University Campus. The School of Medicine is one of the top-ranked in the UK, and the research institute has an international reputation for world-leading research in medical engineering and healthcare technologies.

The Guy Hilton Research Centre offers state-of-the-art laboratories housing equipment for translational research including newly-developed diagnostic instruments, advanced imaging modalities and additive manufacturing facilities. Its location adjacent to the University Hospital ensures that students experience real-world patient care and the role that technology plays. Students also have access to advanced equipment for physiological measurement, motion analysis and functional assessment in other hospital and campus-based laboratories.

The School embraces specialists working in Royal Stoke University Hospital, County Hospital in Stafford and specialist Robert Jones and Agnes Hunt Orthopaedic Hospital in Oswestry. You therefore have the opportunity to specialise in any of the varied clinical disciplines offered at these hospitals.

People around table looking at instrument

Download the MSc Medical Engineering Design Leaflet

The School also runs MSc courses in Biomedical Engineering and in Cell and Tissue Engineering, and an EPSRC and MRC-funded Centre for Doctoral Training, ensuring a stimulating academic environment for students and many opportunities for engaging with further study and research.

As a postgraduate student at Keele not only will you be joining a vibrant undergraduate community you will also be part of Keele's celebrated postgraduate family (the first student union dedicated to postgraduate students in the country). For more information on postgraduate life at Keele follow this link to the Keele Postgraduate Association (the link is

Between March and September 2017 the University will be holding a number of Postgraduate Open Afternoons to give prospective students the opportunity to visit the campus and learn more about Keele and postgraduate life in general.  Please visit the Postgraduate Open Afternoons web page for more information.

Aims of the Course

The aim of the MSc in Medical Engineering Design is to convert you into a Medical Engineering Designer so that you can work in this highly regulated design discipline. Students are able to major in three distinct areas, medical devices design, sustainable devices design and formal, structured design per se. This enables students to become distinctive through specialism choices whilst maintain academic rigour through the study of formal engineering design.

The course contains an encouraged internship element  that can contribute to a student’s future, professional engineering registration. Because the course develops your creative engineering design skills whilst maintaining the rigour of a highly regulated design environment, you will be able to transfer the skills and knowledge you develop into a range of industries. You could move into engineering design per se, or move into (for example) Intellectual Property protection (a patent lawyer for example); technical sales; consultancy; or corporate finance. It is, in addition, an ideal stepping-stone into research and development activities in either industry or in academia.

The unique aspects of this course are that staff with direct, relevant industrial experience teach the core modules in medical devices design. Furthermore, a field trip is planned* in November of each year to coincide with the World’s largest medical device trade fair, MEDICA (see Additional Costs tab).

Examples of innovative medical engineering designs

Here are some innovations that are now in commonplace use in the healthcare environment. Keele has been fortunate to have been at the forefront of many innovative developments and works closely with our healthcare partners (the Royal Stoke University Hospital (RSUH) for example, is one of the larger trauma hospitals in the country) to ensure that they are both useful and effective.


The Staffordshire Orthopaedic Reduction Machine was designed by staff teaching on this MSc. It is now being sold across the EU and in the USA. To date it has been used to treat thousands of broken legs and bring them back to near perfect alignment.

Close-up of Storm


IOS is an innovative external fixator system that was designed and developed by staff teaching on this MSc. Again it is on the market across the EU and the USA. To date it has treated over 400 broken legs in Stoke on Trent alone, the shortest healing time being 8.5 weeks.





The Hartshill Horseshoe was designed and developed at the old North Staffordshire Royal Infirmary (now RSUH).  This is an example of a device that is now in widespread use for spinal surgery across the world.  

Entry Requirements

Because this is a “conversion” course you need not have an engineering degree to apply. You must have a STEM (Science, Technology, Engineering or Mathematics) based degree, but that could be anything from Biomedical Science, through Forensic Science, to Computer Science. Of course, if you have an engineering degree you can still apply. 

We welcome applications with a first or second-class degree (or equivalent) in a STEM (Science, Technology, Engineering or Mathematics) discipline. We also welcome enquiries from people with other professional qualifications acceptable to the University.  

We recommend applicants discuss their first degree with the course tutor before applying to ensure that this course meets personal aspirations.

For international applicants, an English language IELTS score of 6.5 is required.

Course Content

The 180 credit programme is made up of CORE and OPTIONAL modules.

StatusName of ModuleCredits
Core Advanced Engineering Applications 30
Core Creative Engineering Design 30
Core Experimental Research Methodology 15
Core Engineering for Medical Applications** 15
Core Research Project 60
Option x 2 2 x option 15 credit modules 15 x 2

**At the start of the award (preferably before enrolment), students will be invited to appraise their undergraduate experience to determine whether they are eligible for APL of the module Engineering for Medical Applications. Students who require the study of this module will be supplied with a pre-course study pack to prepare them for the conversion element of this award.

Two new CORE engineering design modules (Advanced Engineering Applications and Creative Engineering Design) provide a further 60 credits. 

Before undertaking the dissertation project there is an opportunity to study 2 x 15 credit OPTION modules (spread across the first two semesters) derived from existing offerings within Biomedical Engineering and Sustainability.

The final module is an existing CORE module the MSc Project (60 credits).

Core Modules

Advanced Engineering Applications

The aim of this module is to provide underpinning principles of engineering manufacturing, materials and communications to enable students to undertake project based design studies within the context of medical devices and healthcare technologies. The module will develop internal auditing skills as well as covering aspects of "Engineering Applications" and "Engineer in Society" as stipulated by the Engineering Council's specification for engineering education UK­SPEC.

Creative Engineering Design

The aim of this module is to develop a student's formal engineering design ability in order that they could undertake a design project, either as an individual or as part of a design team, within the context of medical devices/healthcare technology.

Experimental Research Methodology

The Experimental Research Methodology Module gives students the skill set that is required for their development in a scientific career; from learning how to take notes in research seminars allowing them to write a comprehensive literature review in that area, to making sure they are efficient with their time in written examinations by giving them the chance to mark practice questions and decide where the marks should be given. The module brings together elements of professional development that should not be overlooked. A range of seminars, workshops and taught classes are timetabled during which students will have the opportunity to learn first-hand a range of skills necessary for them to achieve their best in their Masters programme. Classes on statistics will further support students in other theoretical and practical aspects of their course.

Engineering for Medical Applications

This module will cover the fundamentals of mechanics, electronics and electromagnetism necessary to understand the application of engineering principles to medicine and biology. This will enable students from varying backgrounds and career paths to transition into the advanced topics covered in the core and specialist modules in biomedical engineering. In addition to the lectures, students will take part in a workshop-based project to apply the theory they have learned to practical measurement.

Named Awards for all pathways:
  • MSc Medical Engineering Design: 180 credits
  • PgD Medical Engineering Design: 120 credits (must include Advanced Engineering Applications and Creative Engineering Design)
  • PgC Medical Engineering Design: 60 credits (must include either Advanced Engineering Applications OR Creative Engineering Design)


Teaching and Assessment

The course is taught through lectures and seminar. These are supported by tutorials and practical exercises. Collaborative learning and student-centred learning give widespread opportunity for group work and individual assignments. Students are required to conduct extensive independent study. Online access to literature is supported by full access to the Keele library on campus and the Medical Library on the hospital site. There is a suite of dedicated computers for the exclusive use of MSc students. Students are supported by the guidance of a personal tutor, as well as having access to university-wide support services. English language support is also provided, where appropriate.

Modules will be assessed by a mixture of assessment methods, including lab reports, essays, presentations, and final examinations. In addition to the technical and subject specific knowledge, the course develops a range of transferable employability skills such as team working, time management and planning, written and verbal communication, and numeracy. The project dissertation forms a major component of the student’s assessed work.


Students are able to undertake internships under the University wide scheme (see Keele Internships). As a part of this scheme you may be able to register for additional certification (Accreditation by the Institute of Leadership and Management) under the Keele University Skills Portfolio scheme.

Additional Costs

The core textbooks for this award are provided at the start of the award.

Students should join the award with their own laptop that is able to support software such as Matlab, Labview, and Solidworks.

Apart from additional costs for text books, inter-library loans, potential overdue library fines and some allowance for travel costs associated with a placement internship, we do not anticipate any additional costs for this postgraduate programme.

Field Trip

A field trip is planned* in November of each year to coincide with the World’s largest medical devise trade fair, MEDICA. Because accommodation can be expensive students should be prepared to allocate about £500.

 *The field trip is an aspiration and will depend on student demand and affordability.