Biography

Dr Galizi’s research is focused on the development of innovative methods for the eradication of vector-borne diseases. Before starting his research career at Imperial College London, he studied the in vivo kinetics and adaptive responses of the apicomplexan parasites Toxoplasma gondii and Plasmodium berghei, cause of human toxoplasmosis and rodent malaria, at the University of Perugia (Di Cristina et al., 2008; Galizi et al., 2013; Lunghi et al., 2015). Over the last few years, Dr Galizi has been working on the genetic engineering of novel technologies for the eradication of the deadly malaria-transmitting mosquitoes Anopheles gambiae (Galizi et al., 2014, 2016; Hammond et al., 2016; Hammond and Galizi, 2017; Kyrou et al., 2018) and developed new methods for the elucidation of the mechanisms regulating mosquito reproduction (Taxiarchi et al., 2019). Dr Galizi’s current research combines molecular and synthetic biology, functional genetics and genetic engineering to investigate insect reproduction and generate novel molecular tools for the genetic control of disease transmission.

Selected Publications

  • Simoni A, Hammond AM, Beaghton AK, Galizi R, Taxiarchi C, Kyrou K, Meacci D, Gribble M, Morselli G, Burt A, Nolan T, Crisanti A. 2020. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nat Biotechnol. link> doi> full text>
  • Taxiarchi C, Kranjc N, Kriezis A, Kyrou K, Bernardini F, Russell S, Nolan T, Crisanti A, Galizi R. 2019. High-resolution transcriptional profiling of Anopheles gambiae spermatogenesis reveals mechanisms of sex chromosome regulation. Sci Rep, vol. 9(1), 14841. link> doi> full text>
  • Galizi R and Jaramillo A. 2019. Engineering CRISPR guide RNA riboswitches for in vivo applications. Curr Opin Biotechnol, vol. 55, 103-113. link> doi> full text>
  • Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, Nolan T, Crisanti A. 2018. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol, vol. 36(11), 1062-1066. link> doi> full text>
  • Galizi R, Hammond A, Kyrou K, Taxiarchi C, Bernardini F, O'Loughlin SM, Papathanos P-A, Nolan T, Windbichler N, Crisanti A. 2016. A CRISPR-Cas9 sex-ratio distortion system for genetic control. Sci Rep, vol. 6, 31139. link> doi> full text>

Full Publications List show

Journal Articles

  • Simoni A, Hammond AM, Beaghton AK, Galizi R, Taxiarchi C, Kyrou K, Meacci D, Gribble M, Morselli G, Burt A, Nolan T, Crisanti A. 2020. A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nat Biotechnol. link> doi> full text>
  • Alcalay Y, Fuchs S, Galizi R, Bernardini F, Haghighat-Khah RE, Rusch D, Adrion J, Hahn M, Tortosa P, Papathanos PA. 2019. The potential for a released autosomal X-shredder becoming a driving-Y chromosome and invasively suppressing wild populations of malaria mosquitoes. doi> link> full text>
  • Taxiarchi C, Kranjc N, Kriezis A, Kyrou K, Bernardini F, Russell S, Nolan T, Crisanti A, Galizi R. 2019. High-resolution transcriptional profiling of Anopheles gambiae spermatogenesis reveals mechanisms of sex chromosome regulation. Sci Rep, vol. 9(1), 14841. link> doi> full text>
  • Bernardini F, Kriezis A, Galizi R, Nolan T, Crisanti A. 2019. Publisher Correction: Introgression of a synthetic sex ratio distortion system from Anopheles gambiae into Anopheles arabiensis. Scientific Reports, vol. 9(1), 7915. link> doi> link> full text>
  • Bernardini F, Kriezis A, Galizi R, Nolan T, Crisanti A. 2019. Introgression of a synthetic sex ratio distortion system from Anopheles gambiae into Anopheles arabiensis. Sci Rep, vol. 9(1), 5158. link> doi> full text>
  • Bernardini F, Haghighat-Khah RE, Galizi R, Hammond AM, Nolan T, Crisanti A. 2018. Molecular tools and genetic markers for the generation of transgenic sexing strains in Anopheline mosquitoes. Parasites & Vectors, vol. 11(2), Article 660. link> doi> link> full text>
  • Galizi R and Jaramillo A. 2019. Engineering CRISPR guide RNA riboswitches for in vivo applications. Curr Opin Biotechnol, vol. 55, 103-113. link> doi> full text>
  • Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, Nolan T, Crisanti A. 2018. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol, vol. 36(11), 1062-1066. link> doi> full text>
  • Hammond AM and Galizi R. 2017. Gene drives to fight malaria: current state and future directions. Pathog Glob Health, vol. 111(8), 412-423. link> doi> full text>
  • Hammond A, Kyrou K, Gribble M, Karlsson X, Morianou I, Galizi R, Beaghton A, Crisanti A, Nolan T. 2018. Improved CRISPR-based suppression gene drives mitigate resistance and impose a large reproductive load on laboratory-contained mosquito populations. doi> full text>
  • Bernardini F, Galizi R, Wunderlich M, Taxiarchi C, Kranjc N, Kyrou K, Hammond A, Nolan T, Lawniczak MNK, Papathanos PA, Crisanti A, Windbichler N. 2017. Cross-Species Y Chromosome Function Between Malaria Vectors of the Anopheles gambiae Species Complex. Genetics, vol. 207(2), 729-740. link> doi> full text>
  • Hammond AM, Kyrou K, Bruttini M, North A, Galizi R, Karlsson X, Kranjc N, Carpi FM, D'Aurizio R, Crisanti A, Nolan T. 2017. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet, vol. 13(10), e1007039. link> doi> full text>
  • Werther R, Hallinan JP, Lambert AR, Havens K, Pogson M, Jarjour J, Galizi R, Windbichler N, Crisanti A, Nolan T, Stoddard BL. 2017. Crystallographic analyses illustrate significant plasticity and efficient recoding of meganuclease target specificity. Nucleic Acids Res, vol. 45(14), 8621-8634. link> doi> full text>
  • Galizi R, Hammond A, Kyrou K, Taxiarchi C, Bernardini F, O'Loughlin SM, Papathanos P-A, Nolan T, Windbichler N, Crisanti A. 2016. A CRISPR-Cas9 sex-ratio distortion system for genetic control. Sci Rep, vol. 6, 31139. link> doi> full text>
  • Hall AB, Papathanos P-A, Sharma A, Cheng C, Akbari OS, Assour L, Bergman NH, Cagnetti A, Crisanti A, Dottorini T, Fiorentini E, Galizi R, Hnath J, Jiang X, Koren S, Nolan T, Radune D, Sharakhova MV, Steele A, Timoshevskiy VA, Windbichler N, Zhang S, Hahn MW, Phillippy AM, Emrich SJ, Sharakhov IV, Tu ZJ, Besansky NJ. 2016. Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes. Proc Natl Acad Sci U S A, vol. 113(15), E2114-E2123. link> doi> full text>
  • Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, Gribble M, Baker D, Marois E, Russell S, Burt A, Windbichler N, Crisanti A, Nolan T. 2016. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol, vol. 34(1), 78-83. link> doi> full text>
  • Lunghi M, Galizi R, Magini A, Carruthers VB, Di Cristina M. 2015. Expression of the glycolytic enzymes enolase and lactate dehydrogenase during the early phase of Toxoplasma differentiation is regulated by an intron retention mechanism. Mol Microbiol, vol. 96(6), 1159-1175. link> doi>
  • Castellano L, Rizzi E, Krell J, Di Cristina M, Galizi R, Mori A, Tam J, De Bellis G, Stebbing J, Crisanti A, Nolan T. 2015. The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs. BMC Genomics, vol. 16, 100. link> doi> full text>
  • Galizi R, Doyle LA, Menichelli M, Bernardini F, Deredec A, Burt A, Stoddard BL, Windbichler N, Crisanti A. 2014. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat Commun, vol. 5, 3977. link> doi> full text>
  • Bernardini F, Galizi R, Menichelli M, Papathanos P-A, Dritsou V, Marois E, Crisanti A, Windbichler N. 2014. Site-specific genetic engineering of the Anopheles gambiae Y chromosome. Proc Natl Acad Sci U S A, vol. 111(21), 7600-7605. link> doi> full text>
  • Galizi R, Spano F, Giubilei MA, Capuccini B, Magini A, Urbanelli L, Ogawa T, Dubey JP, Spaccapelo R, Emiliani C, Di Cristina M. 2013. Evidence of tRNA cleavage in apicomplexan parasites: Half-tRNAs as new potential regulatory molecules of Toxoplasma gondii and Plasmodium berghei. Mol Biochem Parasitol, vol. 188(2), 99-108. link> doi>
  • Windbichler N, Galizzi R, Burt A, Crisanti A. 2012. Engineering mosquito population for vector control. Malaria journal, vol. 11(Suppl 1), O44. doi>
  • Di Cristina M, Marocco D, Galizi R, Proietti C, Spaccapelo R, Crisanti A. 2008. Temporal and spatial distribution of Toxoplasma gondii differentiation into Bradyzoites and tissue cyst formation in vivo. Infect Immun, vol. 76(8), 3491-3501. link> doi>

Other

  • Hammond A, Kyrou K, Karlsson X, Galizi R, Kranjc N, Baghton A, Morianou I, Burt A, Crisanti A, Nolan T. 2019. Gene drives for genetic control of the malaria mosquito. FEBS OPEN BIO (vol. 9, p. 62). link> full text>
  • Galizi R, Windbichler N, Crisanti A. 2013. A SYNTHETIC SEX DISTORTER AS A NOVEL MALARIA VECTOR CONTROL STRATEGY. PATHOGENS AND GLOBAL HEALTH (vol. 107, p. 445). link>
  • Windbichler N, Galizi R, Crisanti A. 2013. A SYNTHETIC SEX DISTORTION SYSTEM IN ANOPHELES GAMBIAE. PATHOGENS AND GLOBAL HEALTH (vol. 107, pp. 440-441). link>