Biography

I was awarded my PhD and DSc in Theoretical Solid Mechanics by the Institute for Problems in Mechanics at the Russian Academy of Sciences. I was affiliated with this institution until 2000, when I joined Manchester University. In 2005 I moved to Brunel University where I spent seven years before coming to Keele in 2012. I have also held several visiting positions all over the world, including the University of Alberta, Bordeaux University, City University of Hong-Kong, Technical University of Munich, and Tel-Aviv University.

Research and scholarship

My research interests lie in the general area of physical applied mathematics, including continuum mechanics, acoustics, asymptotic analysis, and multi-scale modelling. I have co-authored over 100 publications in these areas. Amongst these are 3 books including the advanced research monograph ‘Dynamics of Thin Walled Elastic Bodies’, written in collaboration with L.Kossovich and E.Nolde. I am a member of the editorial boards of 5 journals, such as Mathematics and Mechanics of Solids, and Mechanics of Time Dependent Materials.

Research Themes:-

  • Theoretical Solid Mechanics
  • Multi-scale modelling of nano and meta materials

Teaching

  • MAT-30011: Waves
  • MAT-30028: Perturbation Methods

Selected Publications

  • Kaplunov JD, Prikazchikov DA, Sabirova RF. 2022. On a Hyperbolic Equation for the Rayleigh Wave. Doklady Physics, 424-427, vol. 67(10). doi> link>
  • Ege N, Erbaş B, Kaplunov J, Noori N. 2023. Asymptotic corrections to the low-frequency theory for a cylindrical elastic shell. Zeitschrift für angewandte Mathematik und Physik, Article 43, vol. 74(2). doi> full text>
  • Aney S, Shestakov M, Prikazchikova L, Milow B, Prikazchikov D, Kaplunov J, Voggenreiter H, Rege A. 2023. Cellulose-Aerogele als multifunktionale und nachhaltige Alternativen für Flugzeugkabinenelemente. Deutsche Gesellschaft für Luft- und Raumfahrt. link> doi> link> full text>
  • Erbaş B, Kaplunov J, Kiliç G. 2022. Asymptotic analysis of 3D dynamic equations in linear elasticity for a thin layer resting on a Winkler foundation. IMA Journal of Applied Mathematics, 707-721, vol. 87(5). doi> link> full text>
  • Alzaidi ASM, Kaplunov J, Prikazchikova L, Wootton P, Nikonov A. 2022. The effect of contact conditions on the performance of flexural seismic metasurfaces. Zeitschrift für angewandte Mathematik und Physik, Article 194, vol. 73(5). link> doi> link> full text>

Full Publications Listshow

Books

  • Challamel N, Kaplunov J, Takewaki I. 2021. Modern Trends in Structural and Solid Mechanics 1 Statics and Stability. John Wiley & Sons. doi> link>

Journal Articles

  • Kaplunov JD, Prikazchikov DA, Sabirova RF. 2022. On a Hyperbolic Equation for the Rayleigh Wave. Doklady Physics, 424-427, vol. 67(10). doi> link>
  • Ege N, Erbaş B, Kaplunov J, Noori N. 2023. Asymptotic corrections to the low-frequency theory for a cylindrical elastic shell. Zeitschrift für angewandte Mathematik und Physik, Article 43, vol. 74(2). doi> full text>
  • Aney S, Shestakov M, Prikazchikova L, Milow B, Prikazchikov D, Kaplunov J, Voggenreiter H, Rege A. 2023. Cellulose-Aerogele als multifunktionale und nachhaltige Alternativen für Flugzeugkabinenelemente. Deutsche Gesellschaft für Luft- und Raumfahrt. link> doi> link> full text>
  • Erbaş B, Kaplunov J, Kiliç G. 2022. Asymptotic analysis of 3D dynamic equations in linear elasticity for a thin layer resting on a Winkler foundation. IMA Journal of Applied Mathematics, 707-721, vol. 87(5). doi> link> full text>
  • Alzaidi ASM, Kaplunov J, Prikazchikova L, Wootton P, Nikonov A. 2022. The effect of contact conditions on the performance of flexural seismic metasurfaces. Zeitschrift für angewandte Mathematik und Physik, Article 194, vol. 73(5). link> doi> link> full text>
  • Kaplunov J, Prikazchikov DA, Prikazchikova L. 2022. On non-locally elastic Rayleigh wave. Philos Trans A Math Phys Eng Sci, 20210387, vol. 380(2231). link> doi> full text>
  • Kaplunov J, Erbaş B, Ege N. 2022. Asymptotic derivation of 2D dynamic equations of motion for transversely inhomogeneous elastic plates. International Journal of Engineering Science, Article 103723, vol. 178. link> doi> link> full text>
  • Kaplunov J and Prikazchikov DA. On The Derivation Of A String Equation. Mechanics - Proceedings of National Academy of Sciences of Armenia, 163-168, vol. 75(1). link> doi> link>
  • Bratov V, Kaplunov J, Lapatsin SN, Prikazchikov DA. Elastodynamics of a coated half-space under a sliding contact. Mathematics and Mechanics of Solids, 108128652210944. doi> link> full text>
  • Ege N, Erbaş B, Kaplunov J, Noori N. 2022. Low-frequency vibrations of a thin-walled functionally graded cylinder (plane strain problem). Mechanics of Advanced Materials and Structures, 1-9. link> doi> link>
  • Kaplunov J, Panasenko G, Prikazchikova L. 2022. Homogenized equation of second-order accuracy for conductivity of laminates. Applicable Analysis, 1-9. doi> link> full text>
  • Kaplunov J, Prikazchikov DA, Prikazchikova L. 2022. On integral and differential formulations in nonlocal elasticity. European Journal of Mechanics - A/Solids, 104497. doi> link> full text>
  • Erbaş B, Kaplunov J, Elishakoff I. 2021. Asymptotic derivation of a refined equation for an elastic beam resting on a Winkler foundation. Mathematics and Mechanics of Solids, 108128652110238. link> doi> link>
  • Kaplunov J, Prikazchikova L, Alkinidri M. 2021. Antiplane shear of an asymmetric sandwich plate. Continuum Mechanics and Thermodynamics. doi> link> full text>
  • Kaplunov J and Sahin O. 2020. Perturbed rigid body motions of an elastic rectangle. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, vol. 71(5). doi> link>
  • Fu Y, Kaplunov J, Ogden RW. 2020. Preface to a special feature dedicated to the memory of Prof. Peter Chadwick FRS. Proc Math Phys Eng Sci, 20200615, vol. 476(2240). link> doi> full text>
  • Ege N, Erbaş B, Kaplunov J. 2020. Asymptotic derivation of refined dynamic equations for a thin elastic annulus. Mathematics and Mechanics of Solids. doi> link>
  • Wootton PT, Kaplunov J, Prikazchikov D. 2020. A second-order asymptotic model for Rayleigh waves on a linearly elastic half plane. IMA JOURNAL OF APPLIED MATHEMATICS, 113-131, vol. 85(1). link> doi> full text>
  • Fu Y, Kaplunov J, Prikazchikov D. 2020. Reduced model for the surface dynamics of a generally anisotropic elastic half-space. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, Article ARTN 20190590, vol. 476(2234). link> doi> full text>
  • Kaplunov J, Khajiyeva LA, Martyniuk M, Sergaliyev AS. 2019. On the dynamics of drilling. International Journal of Engineering Science, 103184, vol. 146. doi> link>
  • Şahin O, Erbaş B, Kaplunov J, Savšek T. 2019. The lowest vibration modes of an elastic beam composed of alternating stiff and soft components. Archive of Applied Mechanics. link> doi>
  • Alzaidi AS, Kaplunov J, Prikazchikova L. 2019. The edge bending wave on a plate reinforced by a beam (L). J Acoust Soc Am, 1061, vol. 146(2). link> doi> full text>
  • Wootton PT, Kaplunov J, Colquitt DJ. 2019. An asymptotic hyperbolic-elliptic model for flexural-seismic metasurfaces. Proc Math Phys Eng Sci, 20190079, vol. 475(2227). link> doi> full text>
  • Erbaş B, Kaplunov J, Palsü M. 2019. A composite hyperbolic equation for plate extension. Mechanics Research Communications, 64-67, vol. 99. doi> link> full text>
  • Kaplunov J, Prikazchikov D, Sultanova L. 2019. Rayleigh-type waves on a coated elastic half-space with a clamped surface. Philos Trans A Math Phys Eng Sci, 20190111, vol. 377(2156). link> doi> full text>
  • Alzaidi ASM, Kaplunov J, Prikazchikova L. 2019. Elastic bending wave on the edge of a semi-infinite plate reinforced by a strip plate. Mathematics and Mechanics of Solids, 1081286519840687. doi> link>
  • Challamel N, Zhang H, Wang CM, Kaplunov J. 2019. Scale effect and higher-order boundary conditions for generalized lattices, with direct and indirect interactions. MECHANICS RESEARCH COMMUNICATIONS, 1-7, vol. 97. link> doi>
  • Kaplunov J, Prikazchikov DA, Prikazchikova LA, Sergushova O. 2019. The lowest vibration spectra of multi-component structures with contrast material properties. JOURNAL OF SOUND AND VIBRATION, 132-147, vol. 445. link> doi> full text>
  • Kaplunov J, Prikazchikov D, Sultanova L. 2019. Elastic contact of a stiff thin layer and a half-space. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, Article ARTN 22, vol. 70(1). link> doi> full text>
  • Kaplunov J, Erbas B, Nobili A, Kilic G. 2018. Dispersion of elastic waves in a layer interacting with a Winkler foundation. Journal of the Acoustical Society of America, vol. 144(5). doi> full text>
  • Ege N, Erbas B, Kaplunov J, Wootton P. 2018. APPROXIMATE ANALYSIS OF SURFACE WAVE-STRUCTURE INTERACTION. JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 297-309, vol. 13(3). link> doi>
  • Aydin Y, Erbas B, Kaplunov J, Prikazchikova L. 2018. Asymptotic analysis of an anti-plane dynamic problem for a three-layered strongly inhomogeneous laminate. Mathematics and Mechanics of Solids, 3-16, vol. 25(2). doi> link> full text>
  • Kaplunov J, Danishevskyy VV, Colquitt D. 2018. Composite dynamic models for periodically heterogeneous media. Mathematics and Mechanics of Solids. doi> link> full text>
  • Erbas B, Kaplunov J, Nolde E, Palsu M. 2018. Composite wave models for elastic plates. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, Article ARTN 20180103, vol. 474(2214). link> doi> full text>
  • Nolde E, Pichugin AV, Kaplunov J. 2018. An asymptotic higher-order theory for rectangular beams. Proc Math Phys Eng Sci, 20180001, vol. 474(2214). link> doi> full text>
  • Kaplunov J, Prikazchikov D, Sultanova L. 2018. Justification and refinement of Winkler-Fuss hypothesis. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, Article ARTN 80, vol. 69(3). link> doi> full text>
  • Andrianov IV, Kaplunov J, Kudaibergenov AK, Manevitch LI. 2017. The effect of a weak nonlinearity on the lowest cut-off frequencies of a cylindrical shell. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, Article 1, vol. 69. doi>
  • Kaplunov J, Prikazchikov DA, Prikazchikova LA. 2017. Dispersion of elastic waves in laminated glass. X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 1489-1494, vol. 199. link> doi> full text>
  • Ege N, Erbas B, Chorozoglou A, Kaplunov J, Prikazchikov DA. 2017. On surface wave fields arising in soil-structure interaction problems. X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2366-2371, vol. 199. link> doi> full text>
  • Kaplunov J and Nobili A. 2017. A robust approach for analysing dispersion of elastic waves in an orthotropic cylindrical shell. Journal of Sound and Vibration, 23-35, vol. 401. doi> link> full text>
  • Chebakov R, Kaplunov J, Rogerson GA. 2017. A non-local asymptotic theory for thin elastic plates. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, Article ARTN 20170249, vol. 473(2203). link> doi> full text>
  • Kaplunov J and Prikazchikov D. 2017. Asymptotic Theory for Rayleigh and Rayleigh-Type Waves. Advances in Applied Mechanics. doi> full text>
  • Kaplunov J, Prikazchikov DA, Prikazchikova LA. 2017. Dispersion of elastic waves in a strongly inhomogeneous three-layered plate. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 169-179, vol. 113. link> doi> full text>
  • Kaplunov JD, Nolde EV, Rogerson GA. 2002. An asymptotically consistent model for long-wave high-frequency motion in a pre-stressed elastic plate. MATHEMATICS AND MECHANICS OF SOLIDS, 581-606, vol. 7(6). link> doi>
  • Kaplunov J, Prikazchikov DA, Rogerson GA. 2016. Edge bending wave on a thin elastic plate resting on a Winkler foundation. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, Article ARTN 20160178, vol. 472(2190). link> doi> full text>
  • Kaplunov J, Manevitch LI, Smirnov VV. 2016. Vibrations of an elastic cylindrical shell near the lowest cut-off frequency. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. doi> full text>
  • Kaplunov J, Prikazchikov D, Sergushova O. 2016. Multi-parametric analysis of the lowest natural frequencies of strongly inhomogeneous elastic rods. JOURNAL OF SOUND AND VIBRATION, 264-276, vol. 366. link> doi> full text>
  • Kaplunov J and Nobili A. 2016. Multi-parametric analysis of strongly inhomogeneous periodic waveguides with internal cutoff frequencies. Mathematical Methods in the Applied Sciences. doi> full text>
  • Chebakov R, Kaplunov J, Rogerson GA. 2016. Refined boundary conditions on the free surface of an elastic half-space taking into account non-local effects. Proc Math Phys Eng Sci, 20150800, vol. 472(2186). link> doi> full text>
  • Elishakoff I, Kaplunov J, Nolde E. 2015. Celebrating the Centenary of Timoshenko's Study of Effects of Shear Deformation and Rotary Inertia. APPLIED MECHANICS REVIEWS, Article ARTN 060802, vol. 67(6). link> doi>
  • Danishevs'kyy VV, Kaplunov JD, Rogerson GA. 2015. Anti-plane shear waves in a fibre-reinforced composite with a non-linear imperfect interface. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 223-232, vol. 76. link> doi> full text>
  • Kaplunov J and Nobili A. 2015. The edge waves on a Kirchhoff plate bilaterally supported by a two-parameter elastic foundation. Journal of Vibration and Control. doi> full text>
  • Kaplunov J, Shestakova A, Aleynikov I, Hopkins B, Talonov A. 2015. Low-frequency perturbations of rigid body motions of a viscoelastic inhomogeneous bar. Mechanics of Time-Dependent Materials, 135-151, vol. 19(2). doi> full text>
  • Kaplunov J, Prikazchikov DA, Rogerson GA, Lashab MI. 2014. The edge wave on an elastically supported Kirchhoff plate. Journal of the Acoustical Society of America, 1487-1490, vol. 136(4). link> doi> full text>
  • Erbas B, Kaplunov J, Prikazchikov DA, Sahin O. 2017. The near-resonant regimes of a moving load in a three-dimensional problem for a coated elastic half-space. MATHEMATICS AND MECHANICS OF SOLIDS, 89-100, vol. 22(1). link> doi> full text>
  • Craster RV, Joseph LM, Kaplunov J. Long-wave asymptotic theories: The connection between functionally graded waveguides and periodic media. Wave Motion, 581-588, vol. 51(4). doi> full text>
  • Kaplunov J, Prikazchikov DA, Erbas B, Sahin O. 2013. On a 3D moving load problem for an elastic half space. WAVE MOTION, 1229-1238, vol. 50(8). link> doi>
  • Erbas, B, Kaplunov, J, Prikazchikov D. 2012. The Rayleigh wave field in mixed problems for a half-plane. IMA Journal of Applied Mathematics, 1078-1086. doi>
  • Craster RV, Kaplunov J, Nolde E, Guenneau S. 2012. Bloch dispersion and high frequency homogenization for separable doubly-periodic structures. WAVE MOTION, 333-346, vol. 49(2). link> doi>
  • Lawrie JB and Kaplunov J. 2012. Special Issue on Dynamic Edge Phenomena on Elastic Structures Preface. MATHEMATICS AND MECHANICS OF SOLIDS, 3, vol. 17(1). link> doi>
  • Lawrie JB and Kaplunov J. 2012. Edge waves and resonance on elastic structures: An overview. MATHEMATICS AND MECHANICS OF SOLIDS, 4-16, vol. 17(1). link> doi>
  • Fu YB and Kaplunov J. 2012. Analysis of localized edge vibrations of cylindrical shells using the Stroh formalism. MATHEMATICS AND MECHANICS OF SOLIDS, 59-66, vol. 17(1). link> doi>
  • Craster RV, Guenneau S, Kaplunov J, Nolde E. 2011. On a class of three-phase checkerboards with unusual effective properties. COMPTES RENDUS MECANIQUE, 411-417, vol. 339(6). link> doi> full text>
  • Craster RV, Kaplunov J, Nolde E, Guenneau S. 2011. High-frequency homogenization for checkerboard structures: defect modes, ultrarefraction, and all-angle negative refraction. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1032-1040, vol. 28(6). link> doi>
  • Nolde E, Craster RV, Kaplunov J. 2011. High frequency homogenization for structural mechanics. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 651-671, vol. 59(3). link> doi>
  • Its A, Its E, Kaplunov J. 2011. Riemann-Hilbert Approach to the Elastodynamic Equation: Part I. LETTERS IN MATHEMATICAL PHYSICS, 53-83, vol. 96(1-3). link> doi>
  • Kaplunov J, Nolde E, Prikazchikov DA. 2010. A revisit to the moving load problem using an asymptotic model for the Rayleigh wave. WAVE MOTION, 440-451, vol. 47(7). link> doi>
  • Erbas B, Yusufoglu E, Kaplunov J. 2011. A plane contact problem for an elastic orthotropic strip. JOURNAL OF ENGINEERING MATHEMATICS, 399-409, vol. 70(4). link> doi>
  • Craster RV, Kaplunov J, Postnova J. 2010. High-Frequency Asymptotics, Homogenisation and Localisation for Lattices. QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 497-519, vol. 63(4). link> doi>
  • Dai H-H, Kaplunov J, Prikazchikov DA. 2010. A long-wave model for the surface elastic wave in a coated half-space. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 3097-3116, vol. 466(2122). link> doi>
  • Craster RV, Kaplunov J, Pichugin AV. 2010. High-frequency homogenization for periodic media. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2341-2362, vol. 466(2120). link> doi>
  • Kaplunov J, Voloshin V, Rawlins AD. 2010. Uniform Asymptotic Behaviour of Integrals of Bessel Functions with a Large Parameter in the Argument. QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 57-72, vol. 63(1). link> doi>
  • Shuvalov AL, Kaplunov J, Nolde E. 2009. Low-Frequency Cutoffs for the Dispersion Spectrum of Elastic Waves in a Thin-Walled Anisotropic Cylinder. JOURNAL OF ELASTICITY, 31-42, vol. 95(1-2). link> doi>
  • Kaplunov J, Pichugin AV, Zernov V. 2009. Extensional edge modes in elastic plates and shells. J Acoust Soc Am, 621-623, vol. 125(2). link> doi>
  • Kaplunov J and Nolde E. 2008. An example of a quasi-trapped mode in a weakly non-linear elastic waveguide. COMPTES RENDUS MECANIQUE, 553-558, vol. 336(7). link> doi>
  • Zernov V and Kaplunov J. 2008. Three-dimensional edge waves in plates. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 301-318, vol. 464(2090). link> doi>
  • Every AG, Kaplunov JD, Pichugin AV, Rogerson GA. 2007. Wave arrival singularities at cuspidal points in the acoustic wave surfaces of anisotropic solids and their unfolding under weak spatial dispersion. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2983-3000, vol. 463(2087). link> doi>
  • Every AG, Kaplunov JD, Rogerson GA. 2006. Unfolding of wave-arrival singularities in the elastodynamic Green's functions of anisotropic solids under weak spatial dispersion. PHYSICAL REVIEW B, Article ARTN 184307, vol. 74(18). link> doi>
  • Poncelet O, Shuvalov AL, Kaplunov J. 2006. Approximation of the flexural velocity branch in plates. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 6329-6346, vol. 43(21). link> doi>
  • Kaplunov J, Zakharov A, Prikazchikov D. 2006. Explicit models for elastic and piezoelastic surface waves. IMA JOURNAL OF APPLIED MATHEMATICS, 768-782, vol. 71(5). link> doi>
  • Kaplunov J and Krynkin A. 2006. Resonance vibrations of an elastic interfacial layer. JOURNAL OF SOUND AND VIBRATION, 663-677, vol. 294(4-5). link> doi>
  • Kaplunov JD, Pichugin AV, Rogerson GA. 2006. On a Lamb-type problem for a bi-axially pre-stressed incompressible elastic plate. IMA JOURNAL OF APPLIED MATHEMATICS, 171-185, vol. 71(2). link> doi>
  • ROGERSON GA, Kaplunov JD, Nolde EV. 2006. An asymptotic analysis of initial-value problems for thin elastic plates. Proceedings of the Royal Society, Series A, 2541-2561, vol. 462(2073). doi>
  • Zernov V, Pichugin AV, Kaplunov J. 2006. Eigenvalue of a semi-infinite elastic strip. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1255-1270, vol. 462(2068). link> doi>
  • Kaplunov J, Prikazchikov DA, Rogerson GA. 2005. On three-dimensional edge waves in semi-infinite isotropic plates subject to mixed face boundary conditions. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2975-2983, vol. 118(5). link> doi>
  • ROGERSON GA, Kaplunov JD, Tovstik P. 2005. Localized vibration in elastic structures with slowly varying thickness. Quarterly Journal of Mechanics and Applied Mathematics, 645-664, vol. 58(4). doi>
  • Kaplunov JD and Pichugin A. 2005. A bending quasi-front generated by an instantaneous impulse loading at the edge of a semi-infinite pre-stressed incompressible elastic plate. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1079-1098, vol. 53(5). link> doi>
  • Babenkova E and Kaplunov J. 2005. Radiation conditions for a semi-infinite elastic strip. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1163-1179, vol. 461(2056). link> doi>
  • Kaplunov JD, Nolde EV, Shorr BF. 2005. A perturbation approach for evaluating natural frequencies of moderately thick elliptic plates. JOURNAL OF SOUND AND VIBRATION, 905-919, vol. 281(3-5). link> doi>
  • Perel MV, Kaplunov JD, Rogerson GA. 2005. An asymptotic theory for internal reflection in weakly inhomogeneous elastic waveguides. WAVE MOTION, 95-108, vol. 41(2). link> doi>
  • Babenkova, Ye.V, Kaplunov YD, Ustinov, Yu.A. 2005. Saint-venant's principle in the case of the low-frequency oscillations of a half-strip. Journal of Applied Mathematics and Mechanics, 405-416, vol. 69(3).
  • Kaplunov J, Kirillova, IV, Postnova, Yu.A. 2004. Dispersion of waves in a plane acoustic layer with flexible elastic walls. Acoustical Physics, 694-698, vol. 50(6). doi>
  • Babenkova E and Kaplunov J. 2004. Low-frequency decay conditions for a semi-infinite elastic strip. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2153-2169, vol. 460(2048). link> doi>
  • Kaplunov J, Kossovich L, Zakharov A. 2004. An explicit asymptotic model for the Bleustein-Gulyaev wave. COMPTES RENDUS MECANIQUE, 487-492, vol. 332(7). link> doi>
  • Kaplunov JD, Prikazchikov DA, Rogerson GA. 2004. Edge vibration of a pre-stressed semi-infinite strip with tractionfree edge and mixed face boundary conditions. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 701-719, vol. 55(4). link> doi>
  • Kaplunov J and Kossovich, L.Yu. 2004. Asymptotic model of Rayleigh waves in the far-field zone in an elastic half-plane. Doklady Physics, 234-236, vol. 49(4). doi>
  • Kaplunov JD, Kovalev VA, Wilde MV. 2003. Matching of asymptotic models in scattering of a plane acoustic wave by an elastic cylindrical shell. JOURNAL OF SOUND AND VIBRATION, 639-655, vol. 264(3). link> doi>
  • Kaplunov J, Kovalev, VA, Wilde, MV. 2003. Matching of asymptotic models in scattering of a plane acoustic wave by an elastic cylindrical shell. Journal of Sound and Vibration, 639-655, vol. 264(3).
  • Bokeria, LA, Kaplunov J, Lavrentiev, AV. 2003. End to strokes. World of Science, 78-82, vol. 12.
  • Wilde, MV and Kaplunov J. 2003. Resonances of the Rayleigh waves in an elastic semi-infinite strip. Acoustical Physics, 31-35, vol. 49(1). doi>
  • Kaplunov J, Nolde, EV, Rogerson, GA. 2002. An Asymptotically Consistent Model for Long-Wave High-Frequency Motion in a Pre-Stressed Elastic Plate. Mathematics and Mechanics of Solids, 581-606, vol. 7(6). doi>
  • Kaplunov JD and Nolde EV. 2002. Long-wave vibrations of a nearly incompressible isotropic plate with fixed faces. QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 345-356, vol. 55. link> doi>
  • Kaplunov JD, Nolde EV, Rogerson GA. 2002. Short wave motion in a pre-stressed incompressible elastic plate. IMA JOURNAL OF APPLIED MATHEMATICS, 383-399, vol. 67(4). link> doi>
  • Kaplunov JD and Wilde MV. 2002. Free interfacial vibrations in cylindrical shells. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2692-2704, vol. 111(6). link> doi>
  • Kaplunov J, Kovalev, VA, Wilde, MV. 2002. Approximate description of resonances of whispering gallery type waves in the problem of acoustic wave scattering by elastic circular cylinders and spheres. Mechanics of Solids, 147-158, vol. 37(4).
  • Wilde, MV, Kaplunov J, Kovalev, VA. 2002. On the approximation of plane layer type in the problem of acoustic wave scattering by a cylindrical shell. Mathematics and Mechanics of Solids, 153-159, vol. 37(3).
  • Emri I, Kaplunov JD, Nolde EV. 2001. Analysis of transient waves in thin structures utilizing matched asymptotic expansions. ACTA MECHANICA, 55-68, vol. 149(1-4). link> doi>
  • Kaplunov JD, Nolde EV, Rogerson GA. 2000. A low-frequency model for dynamic motion in pre-stressed incompressible elastic structures. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2589-2610, vol. 456(2003). link> doi>
  • Kaplunov JD, Kossovich LY, Rogerson GA. 2000. Direct asymptotic integration of the equations of transversely isotropic elasticity for a plate near cut-off frequencies. QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 323-341, vol. 53. link> doi>

Chapters

  • Kaplunov J. Chapter 10 - Some aspects of wave propagation in a fluid-loaded membrane. In Mechanics and Physics of Structured Media Asymptotic and Integral Equations Methods of Leonid Filshtinsky. Elsevier. link> doi> link>
  • Kaplunov J, Prikazchikova L, Shamsi S. Dispersion of the Bending Wave in a Fluid-loaded Elastic Layer. In Advances in Solid and Fracture Mechanics. Springer. link> doi> link>
  • Kaplunov J. Dynamic Sliding Contact for a Thin Elastic Layer. In Recent Approaches in the Theory of Plates and Plate-Like Structures. (22 vols.). Springer, Cham. link> doi> link>
  • Kaplunov J and Wootton P. 2021. Bridging Waves on a Membrane: An Approach to Preserving Wave Patterns. In Modern Trends in Structural and Solid Mechanics 2: Vibrations. Wiley. link> doi> link>
  • Kaplunov J, Prikazchikov D, Sultanova L. 2019. On Higher Order Effective Boundary Conditions for a Coated Elastic Half-Space. In Problems of Nonlinear Mechanics and Physics of Materials. Andrianov IV, Manevich AI, Mikhlin YV, Gendelman OV (Eds.). Springer International Publishing. doi> link>
  • Andrianov IV, Danishevskyy VV, Kaplunov JD, Markert B. 2019. Wide Frequency Higher-Order Dynamic Model for Transient Waves in a Lattice. In Problems of Nonlinear Mechanics and Physics of Materials. Andrianov IV, Manevich AI, Mikhlin YV, Gendelman OV (Eds.). Springer International Publishing. doi> link>
  • Kaplunov J and Prikazchikov DA. 2017. Asymptotic Theory for Rayleigh and Rayleigh-Type Waves. In ADVANCES IN APPLIED MECHANICS, VOL 50. (vol. 50). link> doi>
  • Kaplunov J, Prikazchikov D, Sergushova O. 2017. Lowest Vibration Modes of Strongly Inhomogeneous Elastic Structures. In Mechanics for Materials and Technologies. (vol. 46). Springer International Publishing. doi> link>
  • Danishevskyy V, Kaplunov J, Rogerson G, Kotov N. 2015. Nonlinear elastic waves in a fibre-reinforced composite with an imperfect interface. In Dynamical Systems. Control and Stability. ARSA Druk i Reklama. full text>
  • Kaplunov J and Prikazchikov DA. 2013. Explicit models for surface, interfacial and edge waves in elastic solids. In Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism. Springer Science & Business Media. full text>
  • Kaplunov J and Pichugin, AV. 2010. On rational boundary conditions for higher-order long-wave models. In IUTAM Symposium on Scaling in Solid Mechanics. Borodich FM (Ed.). Springer.
  • Kaplunov J, Kovalev, V, Wilde, M. 2004. Asymptotic analysis of higher-order peripheral waves in acoustic wave scattering by elastic cylinders and spheres. In IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics. Movchan AB (Ed.). (vol. 113). Springer.
  • Kaplunov J and Babenkova, E. 2004. The two-term interior asymptotic expansion in the case of low-frequency longitudinal vibrations of an elongated elastic rectangle. In IUTAM Symposium on Asymptotics, Singularities and Homogenisation in Problems of Mechanics. Movchan AB (Ed.). (vol. 113). Springer.
  • Kaplunov J. 2004. Universal dynamic theory of shells. (vol. 16). link>

Other

  • Kaplunov J, Prikazchikov D, Prikazchikova L, Nikonov A, Savšek T. Multi-parametric dynamic analysis of lightweight elastic laminates. IOP Conference Series: Materials Science and Engineering: Vol 683. IOP Publishing. doi> full text>
  • Althobaiti SN, Kaplunov J, Prikazchikov DA. 2017. An edge moving load on an orthotropic plate resting on a Winkler foundation. X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017) (pp. 2579-2584, vol. 199). link> doi> full text>
  • Kaplunov JD and Pichugin AV. 2009. On Rational Boundary Conditions for Higher-Order Long-Wave Models. IUTAM SYMPOSIUM ON SCALING IN SOLID MECHANICS (pp. 81-+, vol. 10). link> doi>

Awards and Honours

Elected Member of European Academy of Sciences 2020

Article Eigen-value of a semi-infinite elastic strip (jointly with A.Pichugin and V.Zernov) is a Board Members Favourite in Proc Roy Soc London A (2006-2007); see see review by A. N. Norris.

Administration roles

I have also taken various administrative roles, including Headship of Mathematics Department at Brunel.

Currently, I lead the Mathematics Research Centre at Keele.  In addition, I have an experience of managing major international networks involving both teaching-learning and research components, including Erasmus+ program (Azerbaijan, Belorussia, Georgia, Kazakhstan, Russia), University of Modena Reggio Emilia (Italy), Anadolu University (Turkey). 

I am also an external examiner of BSc and MSc programs at Liverpool University.

School of Computer Science and Mathematics
Keele University
Staffordshire
ST5 5AA