LSC-30039 - Regeneration and Repair in the Nervous System
Coordinator:
Lecture Time: See Timetable...
Level: Level 6
Credits: 15
Study Hours: 150
School Office: 01782 734414

Programme/Approved Electives for 2022/23

None

Available as a Free Standing Elective

No

Co-requisites

None

Prerequisites

LSC-20076 Learning and Memory

Barred Combinations

None

Description for 2022/23

The adult nervous system displays quite a remarkable ability to regenerate following degeneration, or trauma. Furthermore, it has been extensively demonstrated that primary neuronal tissue/cells can be transplanted into the adult nervous system, and given an appropriate time period can integrate with the host tissue, ultimately restoring neurological function.
You will explore regeneration and repair strategies across the peripheral and central (brain and spinal cord) nervous systems, and examine their application in an array of neurological disorders, including Parkinson's disease, Huntington's disease, Alzheimer's disease, spinal cord trauma and stroke.
The module is mainly delivered through the release of short, pre-recorded videos which will be fully supported by live workshops and tutorials all delivered by tutors with active research in nervous system regeneration and repair. You will hear about their current research and get involved in debates on current regeneration topics. Additionally, thanks to the in-course assessments and associated workshops, you will explore and learn two important and essential skills in science: how to write a grant proposal and how to critically peer-review.

Aims
To provide an in-depth grounding in the mechanisms underlying regeneration and repair in the nervous system, covering application of these mechanisms to a range of neurological disorders.

Intended Learning Outcomes

define and explain the molecular and cellular mechanisms involved in repair and regeneration of the central and peripheral nervous system: 3
evaluate evidence from experimental and clinical trials to draw own conclusions regarding the efficacy of neurological cell transplantation: 3
discuss the efficacy of emerging sources of transplant tissue (i.e., Stem Cells, Genetically Modified Tissue), in relation to existing neurological disorders: 1,2,3
evaluate and explain current bioengineering approaches used in repairing and regenerating the nervous system: 1,2,3
prepare a grant proposal that in turn will be used in a peer-review process. This will enable students to critically and constructively evaluate both their own aims and methods (in writing the grant) and those presented in a grant written by a current student on the module: 1,2

Study hours

18 h scheduled teaching comprises:
16 hours tutorials
2 h Q&A
132 h independent study:
40 hours for in-course assessment:
- Assessment 1 (grant proposal): 30 hours
- Assessment 2 (peer-review): 10 hours
92 hours private study
- 20 x 3 h reading around lectures, 60 h
- 30 h preparation and reflection on tutorials
- 2 h practice exam

School Rules

None

Description of Module Assessment

1: Individual Report weighted 30%
2,000 word Research Grant Proposal
Students will produce a 2,000 word grant proposal on a topic applied to regeneration and repair of the nervous system, based on an existing grant proforma.

2: Review weighted 10%
500 word peer review of Grant Proposal
Students will produce a 500 word peer review of an allocated grant proposal generated by other students.

3: Open Book Examination weighted 60%
Online open book exam (two essay examination)
The examination will be released on KLE module page as a PDF document at 9am on the morning of the exam. The paper requires students to answer two essay questions out of five options. Students should answer each question using Word, clearly labelling each question as they provide their answers. Answer questions will be submitted to Turnitin as different files no later than 5pm on the day of release. International students will be asked to notify the School if they need an extension due to different time zones. Although students have been given significant time to complete this exam script, we expect most students to spend no more than 2 hrs. Answers should be as accurate and concise as possible. For essay-based questions, typical answers would be in the range of 500-750 words per question. We recommend that students do not exceed 750 words per essay-based question as we will be assessing the quality of your answer, not the quantity.