PHY-10021 - Electricity and Magnetism
Coordinator: Patrick J Connell Room: LJ 2.03 Tel: +44 1782 7 34922
Lecture Time: See Timetable...
Level: Level 4
Credits: 15
Study Hours: 150
School Office: 01782 734921

Programme/Approved Electives for 2020/21

None

Available as a Free Standing Elective

No

Co-requisites

None

Prerequisites

None

Barred Combinations

Electricity and Stellar Structure

Description for 2020/21

This Level 4 module runs in the second semester. It explores the physical principles and mathematical description of electricity, magnetism and DC and AC circuits, which find application in physics and electronics. The module sets the stage for the treatment of more advanced topics in electromagnetism at Level 6. A mathematics component is included, in which fundamental techniques routinely used in physics are taught and practised. There is also a laboratory component, which involves bench work, computing and communication exercises.

Aims
To help students to understand the basic properties and applications of the electric field, magnetic field, electric circuits and the mathematics necessary to achieve this understanding. To introduce and then develop the transferable, practical and computational skills that are required by practising physicist, through laboratory bench work, computing and communication exercises.

Talis Aspire Reading List
Any reading lists will be provided by the start of the course.
http://lists.lib.keele.ac.uk/modules/phy-10021/lists

Intended Learning Outcomes

Students will understand the theoretical and experimental background of electricity and magnetism, and will appreciate their general physical significance and applications, will be achieved by assessments.
Students be able to carry out numerical calculations and to solve problems in connection with these topics, will be achieved by assessments.
Use of mathematics (including calculus) in solving problems, will be achieved by assessments.
Perform practical work and keep accurate accounts of it, including professionally maintained records of purpose, methodology, and results. Communicate the process and results of practical work in formal, written presentations. Enter, manipulate, and present data with the aid of computer tools. Develop algorithms and write simple computer program, at a level sufficient to assist in laboratory work at Levels 2 and 3, will be achieved by assessments

Study hours

Lectures: 24 hours
Problem Classes: 8 hours
Laboratory Sessions: 12 hours
Computing Classes: 6 hours
Maths Support Classes: 5hours
Maths Problem Classes: 4hours
Problem Sheets: 18 hours
Examination: 2 hours
Maths Class Test/Unseen Examination: 1 hour
Completion of Laboratory Reports: 12 hours
Directed Reading/Independent Study: 58 hours

School Rules

None

Description of Module Assessment

1: Unseen Exam weighted 40%
Two hour unseen examination
Exam paper has three sections: Section A - 10 short questions with total marks 40/100; Section B - choice of 1 out of 2 long questions worth 30/100 marks; Section C - choice of 1 out of 2 long questions worth 30/100 marks.

2: Class Test weighted 20%
One hour unseen Mathematics examination


3: Laboratory Assessment weighted 20%
Laboratory and Computing Sessions
Continuous assessment of a laboratory diary of the completed experiments during Laboratory Sessions (weight 30%). Assessment of a formal laboratory report (weight 60%). Assessment of a computer programming exercises (weight 10%).

4: Problem Sheets weighted 10%
Problem sheets
Three assessed problem sheets.

5: Tutorial weighted 10%
Problem Classes
Tutor-moderated classes in which students complete assigned problems on Maths, Electricity, Magnetism and AC theory, with assistance given as necessary. Assessment is based on weekly attendance and engagement.