PHY-10020 - Oscillations and Waves
Coordinator: Nilanthy Balakrishnan Room: LJ2.10 Tel: +44 1782 7 33045
Lecture Time: See Timetable...
Level: Level 4
Credits: 15
Study Hours: 150
School Office: 01782 734921

Programme/Approved Electives for 2022/23

None

Available as a Free Standing Elective

No

Co-requisites

None

Prerequisites

None

Barred Combinations

None

Description for 2022/23

This Level 1 module runs in the second semester. It explores the physical principles and mathematical description of oscillatory and wave phenomena, which find application in many areas of classical and modern physics and astrophysics. The module requires a firm grasp of the material covered in Level 1 Mechanics, and it sets the stage for the treatment of more advanced topics in optics, and electromagnetism at Levels 2 and 3. A mathematics component is included, in which fundamental techniques routinely used in physics are taught and practiced. There is also a laboratory component, which involves bench work, computing, and communication exercises.

Aims
To introduce and develop the basic concepts of oscillation and wave theory, which underpin many topics in physics, and the mathematics necessary to achieve this understanding. To develop the transferable, practical, and computational skills that are required by the practicing physicist or astrophysicist.

Talis Aspire Reading List
Any reading lists will be provided by the start of the course.
http://lists.lib.keele.ac.uk/modules/phy-10020/lists

Intended Learning Outcomes

Solve the equations of motion for simple harmonic, damped, and forced oscillators. Formulate these equations and understand their physical content in a variety of applications: 1,2,4,5
Solve first- and second-order linear differential equations. Use these and other mathematics techniques, including series and approximations, to solve physical problems. Use complex numbers and partial differentiation in physics applications: 1,2,4,5
Perform practical work and keep accurate accounts of it, including professionally maintained records of purpose, methodology, and results. Communicate the process and results of practical work in formal, written presentations. Enter, manipulate, and present data with the aid of computer tools. Develop algorithms and write simple computer programmes, at a level sufficient to assist in laboratory work at Levels 2 and 3: 3
Understand the mathematical description of travelling and standing waves. Recognize the one-dimensional classical wave equation and solutions to it. Understand the principle of superposition and its relevance to physical phenomena such as standing waves, interference, and diffraction: 1,4,5

Study hours

Lectures: 24 hours
Problem Classes: 6 hours
Laboratory Sessions: 12 hours
Computing Classes: 6 hours
Maths Support Classes: 5 hours
Maths Problem Classes: 4 hours
Maths Class Test/Unseen Exam: 1 hour
Completion of Lab Reports: 12 hours
Directed Reading/Independent Study: 60 hours
Problem Sheets: 18 hours
Examination: 2 hours

School Rules

None

Description of Module Assessment

1: Unseen Exam weighted 40%
2-hour unseen written examination
Exam paper has three sections: Section A - 10 short questions total marks 40/100; Section B - choice of 1 out of 2 long questions worth 30/100 marks; Section C - choice of 1 out of 2 long questions worth 30/100 marks.

2: Class Test weighted 20%
1-hour unseen Mathematics examination
A 1-hour unseen mathematics class test.

3: Laboratory Assessment weighted 20%
Laboratory and Computing Sessions
Continuous assessment of a laboratory diary containing several experiments (weight 30%). Assessment of a formal lab report (weight 60%). Assessment of a computer programming exercises (weight 10%).

4: Problem Sheets weighted 10%
Problem sheets
Three assessed problem sheets.

5: Tutorial weighted 10%
Problem Classes
Tutor-moderated classes in which students complete assigned problems on Maths and Oscillations and Waves, with assistance given as necessary.